US 2003/0061404 Al

[0076] FIG. 8 also depicts the modified web service WS1
API contract 754 as seen by the client application 15 with
method calls, i.e., client calls 701, that contain an additional
parameter “gparam1” of type “AuthID”. For example, this
additional parameter may be an identifier that the client
application 15 is authorized to use the method in the web
service 25. In this example, the additional parameter is
placed as the first parameter to all client calls 701. Other
parameters may be added to the client calls 701. Thus, the
three corresponding examples of client calls 701 in the client
application 15 are:

[0077] methodl(AuthID gparam1, string param1, int
param?2, MyType param3);

[0078] method2(AuthID gparaml, char paraml,
MyType param?2); and

[0079] method3(AuthID gparaml).

[0080] Additionally, if it is a requirement for a web service
25 to have certain parameter types converted to other types
(from the perspective of the client caller), these parameters,
along with the associated target types, and the conversion
method would be described in the web service registry 530,
or an additional table indexed off of the web service registry
530.

[0081] By modifying the API contract, the gateway mod-
ule 500 can make it appear that any web service 25 has any
set of methods as desired, regardless of what methods the
service actually implements. As long as calls to these
methods are honored somewhere inside of the web services
infrastructure 501, it appears to the client application 15 as
though the client method was really implemented by the web
service 25. The web service 25 remains unaware that the
client method exists let alone that the separate client call 701
was made. In general the web services infrastructure 501 is
able to dynamically modify the methods that would appear
to be offered by a web service 25; even adding methods that
might have a central implementation somewhere inside of
the web services infrastructure. For example, for more
convenient calling on the client side, the web service pro-
vider 20 may add a DoMethod() method that takes an
enumeration of the methods offered by a given web service
25 to each web service 25 it offers.

[0082] In similar ways that extra methods can be added to
a given web service 25, new virtual services can be com-
posed of methods from various other web services 25 using
the infrastructure 501. By creating a complete API contract
753 for a virtual service that does not really exist, the
infrastructure 501 can then route the client calls 701 made to
said virtual service methods to the real web services 25 that
implement the WS methods 702. These virtual services
could be composed by a system administrator through an
application that interfaces with the infrastructure’s data-
bases.

[0083] Again, through modification of the API contract
753 whenever it is requested, the gateway module 500 is
able to make it appear that a web service 25 resides at any
virtual location. By ensuring that the WSDL processor of the
gateway module 500 intercepts references to the web service
25 at this virtual location, the gateway module 500 can then
route the call to one of the physical locations where it
actually exists. When a web service 25 changes its physical
location, it is just a matter of updating the data table in the

Mar. 27, 2003

web service registry repository 530 that indicates its location
to the gateway module 500. The original entry in the web
service registry repository 530 may be created through a
gateway module system administration application when a
web service 25 is registered with the gateway module 500.
Clients need not even be aware that the web service 25 has
moved.

[0084] FIG. 9 shows another example of a gateway mod-
ule 900 in accordance with an embodiment of the present
invention. The gateway module 900 includes a client appli-
cation interface unit 310, a communication processor 311, a
web services interface unit request dispatcher, 312, a web
services registry repository 530, a metering module 950, a
web method call processor 960, a web service API contract
processor 965, a billing module 970, and a login services
module 980. The login services module comprises an
authentication module 520, an authorization module 525, an
authentication identifier (ID) provider 940, and an authen-
tication ID validator 945. Components may be added to or
removed from the gateway module 900.

[0085] The client application interface unit 310, commu-
nication processor 311, web services interface unit 312,
authentication module 520, authorization module 525, and
web services registry repository 530 may be similar to those
described above. The metering module 950 keeps track of
the usage of web service client call 701 methods for the
specific client application 15, including the number of client
calls 701 made and amount of server resource consumed.
The web method call processor 960 comprises code to
perform the modifications to the method calls 701, 702 and
responses 703, 704 described above. The web method call
processor 960 may be a SOAP processor, or any suitable
processor for other web method protocols. The API contract
processor 965 comprises code to perform the modifications
to the API method calls 701, 702 and WSDL 703, 704
described above. The API contract processor 965 may be a
WSDL processor, or any suitable processor for other web
service API. The billing unit 970 comprises code to bill
client applications 15 for the transparent use of web services
25. The login services module 980 comprises code to
administer and service a login request received from a client
application 15, and to administer authorization and authen-
tication of a client application 15. The login request may be
passed directly to the login services module 980 from the
client application interface unit 310. Alternatively, the login
request may be first sent to the communication processor
311 to be sent to the login services module. The authenti-
cation ID provider 940 may comprise code which assigns
one or more authentication IDs to a client application 15
when the client application 15 logs into a web service 25.
The authentication ID validator 945 may comprise code to
validate the authentication ID. These components will be
further described below.

[0086] FIG. 10 shows another example of a method for
managing functionality for one or more web services 25
(1000) in accordance with an embodiment of the present
invention. The method (1000) begins with listening for
communications between client applications 15 and web
services 25 (1001). The communications may be client
applications 15 attempting to log into web services 25, client
applications 15 sending web service method calls 701 or API

